

DEPARTMENT OF COMPUTER SCIENCE &ENGINEERING

CERTIFICATE

This is to certify that Ms./Mr. …………………...……………………………………

Reg. No. …..…………………… Section: ……………… Roll No: ………………... has

satisfactorily completed the lab exercises prescribed for Embedded systems lab [CSE

2263] of Second Year B. Tech. in Computer Science and Engineering Degree at MIT,

Manipal, in the academic year 2019-2020.

Date: ……...................................

 Signature

Faculty in Charge

CONTENTS

LAB NO TITLE PAGENO.

COURSE OBJECTIVES AND OUTCOMES i

EVALUATION PLAN i

INSTRUCTIONS TO THE STUDENTS ii – iii

SAMPLE LAB OBSERVATION NOTE PREPARATION 4

1 INTRODUCTION TO KEIL µVISION-4 AND

PROGRAMS ON DATA TRANSFER

INSTRUCTIONS

5

2 PROGRAMS ON ARITHMETIC INSTRUCTIONS 21

3 PROGRAMS ON ARITHMETIC AND LOGICAL

INSTRUCTIONS

23

4 BRANCHING AND LOOPING, CODE

CONVERSION

26

5 SORTING, SEARCHING PROGRAMS 28

6 INTERFACING LED TO ARM

MICROCONTROLLER.

31

7 PROGRAMS ON MULTIPLEXED SEVEN

SEGMENT DISPLAY

37

8 LIQUID CRYSTAL DISPLAY (LCD) AND

KEYBOARD INTERFACING

44

9 ANALOG TO DIGITAL CONVERTOR PROGRAM 55

10 PROGRAM ON DIGITAL TO ANALOG

CONVERTOR (DAC)

59

11 PROGRAM ON PULSE WIDTH MODULATION

(PWM)

62

12 PROGRAM ON STEPPER MOTOR 66

 APPENDIX A 70

 APPENDIX B 74

 APPENDIX C 78

i

Course Objectives

Course Outcomes

Evaluation plan

 Internal Assessment Marks : 60%

 Continuous evaluation component (for each experiment):10 marks

 The assessment will depend on punctuality, program execution, maintaining the

observation note and answering the questions in viva voce

 Total marks of the 12 experiments reduced to marks out of 60

 End semester assessment of 2 hour duration: 40 %

 To gain knowledge about assembly language and Embedded C programming

 To implement the programs using ARM instruction set

 To understand various interfacing circuits necessary for various applications and

programming using ARM.

On the completion of this laboratory course, the students will be able to:

 Gain knowledge about simulator for an embedded system and to execute simple

programs.

 Comprehend the software development for ARM cortex-M microcontroller using

assembly language.

 Develop embedded C program for ARM cortex-M microcontroller by interfacing

various modules to ARM kit

ii

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

1. Students should carry the Class notes, Lab Manual and the required stationery to

every lab session

2. Be in time and follow the Instructions from Lab Instructors

3. Must Sign in the log register provided

4. Make sure to occupy the allotted seat and answer the attendance

5. Adhere to the rules and maintain the decorum

In- Lab Session Instructions

 Follow the instructions on the allotted exercises given in Lab Manual

 Show the program and results to the instructors on completion of experiments

 On receiving approval from the instructor, copy the program and results in the

Lab record

 Prescribed textbooks and class notes can be kept ready for reference if required

General Instructions for the exercises in Lab

 The programs should meet the following criteria:

o Programs should be interactive with appropriate prompt messages, error

messages if any, and descriptive messages for outputs.

o Use meaningful names for variables and procedures.

 Plagiarism (copying from others) is strictly prohibited and would invite severe

penalty during evaluation.

 The exercises for each week are divided under three sets:

o Solved exercise

o Lab exercises - to be completed during lab hours

o Additional Exercises - to be completed outside the lab or in the lab to

enhance the skill

 In case a student misses a lab class, he/ she must ensure that the experiment is

completed at students end or in a repetition class (if available) with the permission

of the faculty concerned but credit will be given only to one day’s experiment(s).

iii

 Questions for lab tests and examination are not necessarily limited to the questions

in the manual, but may involve some variations and / or combinations of the

questions.

 A sample note preparation is given later in the manual as a model for observation.

 LAB NO 2

4

Sample lab observation note preparation

LAB NO: 1 Date:

Title: INTRODUCTION TO KEIL µVISION-4 AND PROGRAMS ON DATA

TRANSFER INSTRUCTIONS

Add two immediate values in the registers and store the result in third register.

Program:

AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0X10001000

 DCD Reset_Handler

 ALIGN

 AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

 MOV R0, #10

 MOV R1, #3

 ADD R2, R0, R1

 END

Sample output:

 LAB NO 2

5

LAB NO: 1 Date:

INTRODUCTION TO KEIL µVISION-4 AND PROGRAMS ON DATA

TRANSFER INSTRUCTIONS

Objectives:

In this lab, students will be able to

 Understand the usage of Keil u Vision 4 software for assembly language.

 Write, build and execute assembly language programs in Keil u Vision 4.

 Use different data transfer instructions of ARM processor

I. Running an assembly language program in Keil u Vision 4

Step 1:

 Create a directory with section followed by roll number (to be unique); e.g. A21

 Start up uVision4 by clicking on the icon from the desktop or from the

"Start" menu or "All Programs". The following screen appears.

 LAB NO 2

6

Step 2: Create a project

To create a project, click on the "Project" menu from the uVision4 screen and select "New

uVision Project”. Then, select the folder you have created already, give project name and

save.

From the "Select Device for Target Target 1..." window, select "NXP" as the vendor. In

that select LPC1768 ARM controller, then click on OK button. Some general information

of the chip is shown in the description box.

 LAB NO 2

7

Make sure you click on "NO" for the following pop up window.

Step 3: Create Source File

From the "File" menu, select "New", to get the editor window. Type the program here.

(Note: give a tab space at the beginning). Save the program with .s extension in the

directory.

 LAB NO 2

8

 LAB NO 2

9

Step 4: Add Source File to the Project

Click on the + symbol near the Target 1 in the top left corner of the window. Right click

on the "Source Group 1", select "Add Existing Files to Group 'Source Group 1'".

 LAB NO 2

10

Select "Files of type" as "asm Source file (*.s*;*.src*;*.a*), then select the file. Click

on "Add", and then click on "Close".

Step 5: Build your project

Click on the "+" beside the "Source Group 1", you will see the program “ Addition.s”

Click on the "Build" button or from the "Project" menu, you will see the following screen.

 LAB NO 2

11

Step 6: Run the program

Run the program through "Debug" menu.

 LAB NO 2

12

Click on "OK" for the pop up window showing "EVALUATION MODE, Running with

Code Size Limit: 32K". You will see the following window.

 LAB NO 2

13

Open uVision4 to full screen to have a better and complete view. The left hand side

window shows the registers and the right side window shows the program code. There

are some other windows open. Adjust the size of them to have better view.

Run the program step by step; observe the change of the values in the registers.

Run the program using the Step Over button or click on Step Over from the Debug

menu. It executes the instructions of the program one after another. To trace the program

one can use the Step button, as well. The difference between the Step Over and Step is

in executing functions. While Step goes into the function and executes its instructions

one by one, Step Over executes the function completely and goes to the instruction next

to the function. To see the difference between them, trace the program once with Step

Over and then with Step. When PC is executing the function and want the function to be

executed completely one can use Step Out. In this case, the instructions of the function

will be executed, it returns from the function, and goes to the instruction which is next to

the function call.

 LAB NO 2

14

 LAB NO 2

15

Click on the "Start/Stop Debug Session" again to stop execution of the program.

II. ARM assembly language module

An ARM assembly language module has several constituent parts.

These are:

 Extensible Linking Format (ELF) sections (defined by the AREA directive).

 Application entry (defined by the ENTRY directive).

 Program end (defined by the END directive).

Assembler Directives

 Assembler directives are the commands to the assembler that direct the assembly

process.

 They do not generate any machine code i.e. they do not contribute to the final size

of machine code and they are assembler specific

AREA:

The AREA directive tells the assembler to define a new section of memory. The memory

can be code (instructions) or data and can have attributes such as READONLY,

 LAB NO 2

16

READWRITE and so on. This is used to define one or more blocks of indivisible memory

for code or data to be used by the linker. The following is the format:

AREA sectionname attribute, attribute, …

The following line defines a new area named mycode which has CODE and

REASDONLY attributes:

AREA mycode, CODE, READONLY

Commonly used attributes are CODE, DATA, READONLY, READWRITE, ALIGN and

END.

READONLY:

It is an attribute given to an area of memory which can only be read from. It is by default

for CODE. This area is used to write the instructions.

READWRITE:

It is attribute given to an area of memory which can be read from and written to. It is by

default for DATA.

CODE:

It is an attribute given to an area of memory used for executable machine instructions. It

is by default READONLY memory.

DATA:

It is an attribute given to an area of memory used for data and no instructions can be

placed in this area. It is by default READWRITE memory.

ALIGN:

It is an attribute given to an area of memory to indicate how memory should be allocated

according to the addresses. When the ALIGN is used for CODE and READONLY, it is

aligned in 4-bytes address boundary by default since the ARM instructions are 32 bit

word. If it is written as ALIGN = 3, it indicates that the information should be placed in

memory with addresses of 23, that is for example 0x50000, 0x50008, 0x50010, 0x50018

and so on.

 LAB NO 2

17

EXPORT:

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol

references in separate object and library files.

DCD (Define constant word):

Allocates a word size memory and initializes the values. Allocates one or more words of

memory, aligned on 4-byte boundaries and defines initial run time contents of the

memory.

ENTRTY:

The ENTRY directive declares an entry point to the program. It marks the first instruction

to be executed. In applications using the C library, an entry point is also contained within

the C library initialization code. Initialization code and exception handlers also contain

entry points

END:

It indicates to the assembler the end of the source code. The END directive is the last line

of the ARM assembly program and anything after the END directive in the source file is

ignored by the assembler.

Example:

AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0X10001000 ;stack pointer value when stack is empty

 ;The processor uses a full descending stack.

 ;This means the stack pointer holds the address of the last

 ;stacked item in memory. When the processor pushes a new item

 ;onto the stack, it decrements the stack pointer and then

 ;writes the item to the new memory location.

 DCD Reset_Handler ; reset vector. The program linker requires Reset_Handler

 LAB NO 2

18

 ALIGN

 AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

;;;;;;;;;;User Code Starts from the next line;;;;;;;;;;;;

MOV R0, #10

MOV R1, #3

ADD R0, R1

END ;End of the program

III. Introduction to ARM addressing modes

Data can be transferred into and out of ARM controller using different addressing modes.

There are different ways to specify the address of the operands for any given operations

such as load, add or branch. The different ways of determining the address of the operands

are called addressing modes. Different addressing modes used in ARM are listed in

Appendix A.

Solved Exercise:

Write an ARM assembly language program to copy 32 bit data from code memory to data

memory.

Source: SRC= 0X00000008 at location pointed by R0

Destination: DST = 0X00000008 at location pointed by R1 after the execution

Program:

AREA RESET, DATA, READONLY

 EXPORT __Vectors

 LAB NO 2

19

__Vectors

 DCD 0x10001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

 AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

 LDR R0, =SRC ; Load address of SRC into R0

 LDR R1, =DST ; Load the address of DST onto R1

 LDR R3, [R0] ; Load data pointed by R0 into R3

 STR R3,[R1] ; Store data from R3 into the address pointed by R1

STOP

 B STOP ; Be there

SRC DCD 8 ; SRC location in code memory

 AREA mydata, DATA, READWRITE

DST DCD 0 ;DST location in data memory

 END

Observations to be made

1. Data storage into the memory: Click on Memory window and go to Memory1

option. Type address pointed by R0 in address space and observe how the data

are stored into the memory.

2. Data movement from one memory to another memory: Click on Memory

window and go to Memory2 option. Type address pointed by R1 in address

space and observe data movement to another location before execution and after

execution.

Lab Exercises:
1. Write an ARM assembly language program to transfer a 32 bit number from one

location in the data memory to another location in the data memory.

2. Write an ARM assembly language program to transfer block of ten 32 bit numbers

from one location to another

 LAB NO 2

20

a. When the source and destination blocks are non-overlapping (from code

memory to data memory)

b. When the source and destination blocks are overlapping

Hint: Use Register indirect addressing mode or indexed addressing mode.

3. Reverse an array of ten 32 bit numbers in the memory.

Additional Exercises:

1. Store two byte values in memory when

a) No ALIGN directive is used

b) ALIGN = 2

c) ALIGN = 4

2. Repeat 2. a) above using pre indexing mode.

 LAB NO 2

21

LAB NO: 2 Date:

PROGRAMS ON ARITHMETIC INSTRUCTIONS

Objectives:

In this lab, students will be able to

 Identify and use the instructions required to perform addition and subtraction

 Debug and trace the programs.

Refer Appendix A for instruction details.

Solved Exercise:

Write a program to add two 32 bit numbers available in the code memory. Store the

result in the data memory

AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x40001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

 AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

 LDR R0, =VALUE1 ;pointer to the first value1

 LDR R1, [R0] ;load the first value into R1

 LDR R0, =VALU2 ;pointer to the second value

 LDR R3, [R0] ;load second number into r3

 ADDS R6, R1, R3 ;add two numbers and store the result in r6

 LDR R2, =RESULT

 STR R6, [R2]

 LAB NO 2

22

STOP

 B STOP

VALUE1 DCD 0X12345678 ; First 32 bit number

VALUE2 DCD 0XABCDEF12 ; Second 32 bit number

 AREA data, DATA, READWRITE

RESULT DCD 0

 END

Lab Exercises:

1. Write a program to add ten 32 bit numbers available in code memory and store

the result in data memory.

2. Write a program to add two 128 bit numbers available in code memory and

store the result in data memory.

Hint: Use indexed addressing mode.

3. Write a program to subtract two 32 bit numbers available in the code memory

and store the result in the data memory.

4. Write a program to subtract two 128 bit numbers available in the code memory

and store the result in the data memory.

Additional Exercises:

1. Write a program to find the 2’s complement of a 64 bit data in R0 and R1 register.

The R0 hold the lower 32 bit.

2. Add and subtract two 32 bit numbers and check all the flags. Take appropriate

data to check all the flags.

LAB NO 3

23

LAB NO: 3 Date:

PROGRAMS ON ARITHMETIC AND LOGICAL INSTRUCTIONS

Objectives:

In this lab, students will be able to

 Identify and use the instructions required to perform multiplication, division and

logical operations

 Debug and trace the programs.

Refer Appendix A for instruction details.

Solved Exercise:

Write an assembly program to multiply two 32 bit numbers

AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x40001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

 AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

LDR R1, =VALUE1 ;pointer to the first value1

 LDR R2,=VALUE2 ;pointer to the second value

UMULL R3, R4, R2, R1 ;Multiply the values from R1 and R2 and store

 ;least significant 32 bit number into R3 and most

 ;significant 32 bit number into R4.

LDR R2, =RESULT

STR R4, [R2]

LAB NO 3

24

ADD R2, #4

STR R3, [R2] ; store result in memory

STOP

B STOP

VALUE1 DCD 0X54000000 ; First 32 bit number

VALUE2 DCD 0X10000002 ; Second 32 bit number

AREA data, DATA, READWRITE

RESULT DCD 0

Note: If the result within 32 bits, use MUL instruction.

Lab Exercises:

1. Write a program to multiply two 32 bit numbers using repetitive addition

 Hint: If two numbers are in R0 and R1 Registers then use following algorithm

Sum=0;

do { sum=sum+R0; R1--; ;Use ADDS instruction for addition and use ADD

;instruction to increment a register by 1

if carry then

R2++; ;Increment carry value by one.

 } while(R1!=0); ;Use Compare instruction to check greater

 ;than or not. And Brach instructions for loop

Result= R2 and R0

2. Repeat the above program for BCD multiplication

3. Find the sum of ‘n’ natural numbers using MLA instruction.

4. Write an assembly language program to find GCD of two numbers

Hint:

 While(a!=b)

{

If(a>b)

a=a-b;

else

b=b-a;

 } Return (a);

LAB NO 3

25

5. Write an assembly language program to find LCM of two numbers

Additional Exercises:

1. Write an assembly language program to generate Fibonacci series.
2. Write an assembly language program to divide a 32-bit number by 16-bit

number by repetitive subtraction
3. Check whether a given number is even or odd.

 LAB NO 5:

26

LAB NO: 4 Date:

BRANCHING AND LOOPING, CODE CONVERSION

Objectives:

In this lab, students will be able to

 Learn different kinds of branching instructions.

 Understand looping code conversion programs

Solved Exercise:

Write an assembly program to convert a 2 digit hexadecimal number into unpacked

ASCII.

AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x40001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

AREA mycode, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

Reset_Handler

LDR R0,=NUM

LDR R3,=RESULT

 LDRB R1,[R0] ; load hex number into register R1

AND R2,R1,#0x0F ; mask upper 4 bits

CMP R2,#09 ; compare the digit with 09

BLS DOWN ; if it is lower than 9 then jump to down label

ADD R2,#07 ;else add 07 to that number

DOWN

ADD R2,#0x30 ; Add 30H to the number, Ascii value of first digit

STRB R2,[R3]

AND R4,R1,#0xF0 ; Mask the second digit

 LAB NO 5:

27

MOV R4,R4,LSR#04 ; Shift right by 4 bits

CMP R4,#09 ; check for >9 or not

BLS DOWN1

ADD R3,#07

DOWN1

ADD R4,#0x30 ; Ascii value of second digit

STRB R4,[R3,#01]

NUM DCD 0x000003A

AREA data, DATA, READWRITE

RESULT DCD 0

 END

Lab Exercises:

1. Write an ARM assembly language program to convert 2-digit hexadecimal

number in ASCII unpacked form into its equivalent packed hexadecimal number

2. Write an ARM assembly language program to convert a 32 bit number in the

unpacked form into packed form.

3. Write an assembly language program to convert a 2-digit BCD number in to its

equivalent hexadecimal number.

4. Write an assembly language program to convert a 2-digit hex number in to its

equivalent BCD number

Additional Exercises:

1. Write an assembly language program to unpack a 32 bit BCD number into eight

32-bit numbers

2. Write an assembly language program to unpack a 32 bit BCD number into eight

32-bit ASCII numbers

3. Write an assembly language program to find the sum of bits (no. of 1’s) of a 32

bit number available in the memory.

 LAB NO 5:

28

LAB NO: 5 Date:

SORTING AND SEARCHING PROGRAMS

Objectives:

In this lab, students will be able to

 Perform advanced list operations in a given list or array.

 Use different branch instructions.

Solved Exercise:

Write an ARM ALP to sort a list using bubble sort.

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x40001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

AREA ascend, code, readonly

 ENTRY

 Reset_Handler

 mov r4,#0

 mov r1,#10

 ldr r0, =list

 ldr r2, =result

up ldr r3, [r0,r4]

 str r3, [r2,r4]

 add r4, #04

 sub r1,#01

 cmp r1,#00

 bhi up

 ldr r0, =result

 LAB NO 5:

29

 mov r3, #10 ; inner loop counter

 sub r3, r3, #1

 mov r9, r3 ; R9 contain no of passes

 ; outer loop counter

 outer_loop

 mov r5, r0

 mov r4, r3 ; R4 contains no of comparison in a pass

inner_loop

 ldr r6, [r5], #4

 ldr r7, [r5]

 cmp r7, r6

 ; swap without swap instruction

 strls r6, [r5]

 strls r7, [r5, #-4]

 subs r4, r4, #1

 bne inner_loop

 sub r3, #1

 subs r9, r9, #1

 bne outer_loop

list dcd 0x10,0x05,0x33,0x24,0x56,0x77,0x21,0x04,0x87,0x01

 AREA data1, data, readwrite

result DCW 0,0,0,0,0,0,0,0,0,0

end

Lab Exercises:

1. Write an assembly program to sort an array using selection sort

2. Write an assembly program to find the factorial of a unsigned number using

recursion

3. Write an assembly program to search an element in an array of ten 32 bit numbers

using linear search.

4. Assume that ten 32 bit numbers are stored in registers R1-R10. Sort these numbers

in the fully ascending stack using selection sort and store the sorted array back

into the registers. Use STM and LDMDB instructions wherever necessary.

 LAB NO 5:

30

Additional Exercises:

1. Repeat question 4 for fully descending stack using STMDB and LDM instruction

wherever necessary.

2. Write an 8086 ALP that contains a list of numbers and makes a count of

a) Even and Odd numbers. b) Numbers greater than 10

LAB NO 6:

31

LAB NO: 6 Date:

INTERFACING LED TO ARM MICROCONTROLLER.

Objectives:

In this lab, students will be able to

 Interface LEDs to the ARM cortex LPC1768 microcontroller using ALS

interfacing board.

Steps to be followed

Project Creation in Keil uvision4 IDE:

• Create a project folder before creating NEW project.

• Use separate folder for each project

• Open Keil uVision4 IDE software by double clicking on “Keil Uvision4” icon.

• Select “Project” then to “New Project” and save it with a name in the respective

Project folder, which is already you created.

• Select the device as “NXP (founded by Philips)” Select “LPC1768” then Press

“OK” and then press “YES” button to add “system_LPC17xx.s” file.

• Go to “File” select “New” to open an editor window. Create a source file and use

the header file “LPC17xx.h” in the source file and save the file. Color syntax

highlighting will be enabled once the file is saved with a Recognized extension

such as “.C “.

• Right click on “Source Group 1” and select the option “Add Files to Group 'Source

Group 1' “add the. C source file(s) to the group.

• Again right click on Source Group 1 and select the option “Add Files to

Group 'Source Group 1' “add the file -

C:Keil\ARM\startup\NXP\LPC17xx\system_LPC17xx.c

• Any changes made to this file at current project will directly change the

source system_LPC17xx.C file. As a result other project settings may get

altered. So it is recommended to copy the file

C:Keil\ARM\startup\NXP\LPC17xx\system_LPC17xx.c to the project folder

and add to the source group.

• Important: This file should be added during each project creation.

• Select “Project” then select “Translate” to compile the File (s).

LAB NO 6:

32

• Select “Project” , select “Build Target” for building all source files such as

“.C”,”.ASM”, “.h”, files, etc…This will create the hex file if there are no warnings

& no errors.

Solved Exercise:

Write a program to turn on/off LED serially.

Note: Before writing the program please check GPIO port pins available in the kit

(Refer Appendix C.)

#include <LPC17xx.h>

unsigned int i,j;

 unsigned long LED = 0x00000010;

 int main(void)

 {

 SystemInit(); ;Add these two function for its internal operation

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL0 &= 0xFF0000FF

 ;Configure Port0 PINS P0.4-P0.11 as GPIO function

 LPC_GPIO0->FIODIR |= 0x00000FF0;

;Configure P0.4-P0.11 as output port

 while(1)

 {

 LED = 0x00000010; Initial value on LED

 for(i=1;i<9;i++) //On the LED's serially

 {

 LPC_GPIO0->FIOSET = LED;

 ; Turn ON LED at LSB(LED connected ;to p0.4)

LAB NO 6:

33

 for(j=0;j<10000;j++);a random delay

 LED <<= 1; Shift the LED to the left by one unit

 } ; loop for 9 times

 LED = 0x00000010;

 for(i=1;i<9;i++) //Off the LED's serially

 {

 LPC_GPIO0->FIOCLR = LED;

 ;Turn OFF LED at LSB(LED connected ;to p0.4)

 for(j=0;j<10000;j++);

 LED <<= 1;

 }

 }

 }

Some Settings to be done in KEILUV4 for Executing C programs :

 In Project Window Right click “TARGET1” and select “options for target

‘TARGET1’ select to option “Target” in that select

1. XTAL 12.0MHz

2. Select IROM1 (starting 0×0 size 0×8000).

3. Select IRAM1 (starting 0×10000000 size 0×8000).

 Then go to option “Output”

Select “Create Hex file”.

 Then go to option “Linker”

Select use memory layout from target dialog

Settings to be done at configuration wizard of system_LPC17xx.c file

• There are three clock sources for CPU. Select Oscillator clock out of three.

This selection is done by CLKSRCSEL register.

• If we disable the PLL0 System clock will be bypassed directly into CPU clock

divider register.

LAB NO 6:

34

• Use CCLKCFG register for choosing the division factor of 4 to get 3MHz out

of 12 MHz Oscillator frequency

• For any other peripherals use the PCLK same as CCLK.

Follow the steps specified below to carry out the settings.

• Double click on system_LPC17xx.c file at project window

• Select the configuration wizard at the bottom

• Expand the icons

• Select Clock configuration

• Under System controls and Status registers

OSCRANGE: Main Oscillator range select 1MHz to 20MHz

OSCEN: Main oscillator enable √

• Under Clock source select register (CLKSRCSEL)

CLKSRC: PLL clock source selection Main oscillator

• Disable PLL0 configuration and PLL1 configuration

• Under CPU Clock Configuration register(CCLKCFG)

CCLKSEL: Divide value for CPU clock for PLL0 4

• Under USB Clock configuration register (USBCLKCFG)

USBSEL: Divide value for USB clock for PLL0 4

• Under Peripheral clock selection register 0 (PCLKSEL0) and 1 (PCLKSEL1)

select Pclk = Cclk for all.

• Under Power control for peripherals (PCONP)

Enable the power for required peripherals

• If CLKOUT to be studied configure the Clock output configuration register

as below

CLKOUTSEL : Main Oscillator

CLKOUTDIV : 1

CLKOUT_EN : √

• Call the functions

SystemInit();

SystemCoreClockUpdate(); at the beginning of the main function without

missing. These functions are defined in system_LPC17xx.c where the actual

clock and other system control registers are configured.

LAB NO 6:

35

• A small change is required in the file system_LPC17xx.c after installation. Go

to text editor:

#define PLL0_SETUP 0

#define PLL1_SETUP 0

if the above #defines are 1 then make 0

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

• Cross cable for programming and serial communication: 1 No

• One working USB port in the host computer system and PC for

downloading the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Some Settings for downloading the program in FLASH MAGIC:

Step1.Connect 9 pin DSUB cross cable from PC to CN9 at the board.

Step2.On the 2 way dip switch SW21. Short jumper JP3

Step3.Open flash magic 6.01

Step4.Make following setting in Flash magic(Only once)

a. Communications:

Device: LPC1768

Com Port: COM1

Baud Rate: 9600

Interface: None(ISP)

Oscillator: 12MHz

b. ERASE:

Select “Erase Blocks Used By Hex File”.

c. Hex file:

Browse and select the Hex file which you want to download.

d. Options:

Select “Verify After Programming”.

Go to Options -> Advanced Options->communications

Do not select High Speed Communications, keep baud rate 115200.

LAB NO 6:

36

Options -> Advanced Options->Hardware config

Select Use DTR & RTS to control RST & ISP Pin.

Select Keep RTS asserted while COM Port open.

T1 = 50ms. T2 = 100ms.

Step5.Start:

 Click “Start” to download the hex file to the controller.

Step6. Connect one end of 10 pin FRC cable to CNA1, Short other end to CNA

Step7. Press reset controller switch SW1 and Check output on the LEDs

 connected to CNA1.

Lab Exercises:

1. Write a C program to display 8-bit binary up counter on the LEDs.

2. Write a C program to read a key and display an 8-bit up/down counter on the

LEDs.

Hint: Use key SW2(if SW2=1, up counter else down counter), which is available

at CNB1 pin 7. Connect CNB1 to any controller connector like CNB, CNC etc.

Configure corresponding port pin as GPIO using corresponding PINSEL register

and input pin using corresponding FIODIR register.

3. Write a program to simulate an 8- bit ring counter with key press (SW2).

 LAB NO 7

37

LAB NO: 7. Date:

PROGRAMS ON MULTIPLEXED SEVEN SEGMENT DISPLAY

Objectives

In this lab students will be able to

 Interface and understand the working of multiplexed seven segments display

Introduction:

There are four multiplexed 7-segment display units (U8, U9, U10 and U11) on the

board. Each display has 8-inputs SEG_A (Pin-7), SEG_B (Pin-6), SEG_C (Pin-

4), SEG_D (Pin-2), SEG_E (Pin-1), SEG_F (Pin-9), SEG_G (Pin-10) and SEG_H

(Pin-5) and the remaining pins pin-3 & pin-8 are Common Cathode CC. These

segments are common cathode type hence active high devices.

At power on all the segments are pulled up. A four bits input through CNB2 is used

for multiplexing operation. A 1-of-10 Decoder/Driver U7 is used to accept BCD inputs

and provide appropriate outputs for enabling the required display.

8 bits data is provided in this block using CNA2. All the data lines are taken buffered

at U12 before giving to the displays.

 LAB NO 7

38

At controller end any 2 connector are required for interfacing this block.

 LAB NO 7

39

Lookup Table for displaying 0,1,2,3 to 9

 value= h g f e d c b a On 7-SEG U8,U9,U10 & U11.

 * 0x3F = 0 0 1 1 1 1 1 1 -> Displaying '0'

 * 0x06 = 0 0 0 0 0 1 1 0 -> Displaying '1'

 * 0x5B = 0 1 0 1 1 0 1 1 -> Displaying '2'

 * 0x4F = 0 1 0 0 1 1 1 1 -> Displaying '3'

 * 0x66 = 0 1 1 0 0 1 1 0 -> Displaying '4'

 * 0x6D = 0 1 1 0 1 1 0 1 -> Displaying '5'

 * 0x7D = 0 1 1 1 1 1 0 1 -> Displaying '6'

 * 0x07 = 0 0 0 0 0 1 1 1 -> Displaying '7'

 * 0x7F = 0 1 1 1 1 1 1 1 -> Displaying '8'

 * 0x6F = 0 1 1 0 1 1 1 1 -> Displaying '9'

Solved Exercise:

WAP to simulate 4-digit BCD up counter on the multiplexed seven segment display.

 #include <LPC17xx.h>

 #include <stdio.h>

 #define FIRST_SEG 0xF87FFFFF

 #define SECOND_SEG 0xF8FFFFFF

 #define THIRD_SEG 0xF97FFFFF

 #define FOURTH_SEG 0xF9FFFFFF

 #define DISABLE_ALL 0xFA7FFFFF

 unsigned int dig1=0x00,dig2=0x00,dig3=0x00,dig4=0x00;

 unsigned int twenty_count = 0x00,dig_count=0x00,temp1=0x00;

 unsigned char

array_dec[10]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

 unsigned char tmr0_flg = 0x00,one_sec_flg = 0x00;

 unsigned long int temp2 = 0x00000000,i=0;

 unsigned int temp3=0x00;

 void delay(void);

void display(void);

 int main(void)

 {

 LAB NO 7

40

 SystemInit();

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL0 &= 0xFF0000FF; //P0.4 to P0.11

 //GPIO data lines

 LPC_PINCON->PINSEL3 &= 0xFFC03FFF; //P1.23 to P1.26

 //GPIO enable lines

 LPC_GPIO0->FIODIR |= 0x00000FF0; //P0.4 to P0.11 output

 LPC_GPIO1->FIODIR |= 0x07800000; //P1.23 to P1.26 output

 while(1)

 {

 Delay();

 dig_count +=1;

 if(dig_count == 0x05)

 { dig_count = 0x00;

 one_sec_flg =0xFF;

 }

 if(one_sec_flg == 0xFF)

 {

 one_sec_flg = 0x00;

 dig1 +=1;

 if(dig1 == 0x0A)

 {

 dig1 = 0;

 dig2 +=1;

 if(dig2 == 0x0A)

 {

 dig2 = 0;

 dig3+=1;

 if(dig3 == 0x0A)

 {

 dig3 = 0;

 dig4 += 1;

 if(dig4 == 0x0A)

 LAB NO 7

41

 {

 dig4 = 0;

 } //end of dig4

 } //end of dig3

 } //end of dig2

 } //end of dig1

 } //end of one_sec if

 Display();

 } //end of while(1)

 }//end of main

 void Display(void) //To Display on 7-segments

 {

 if(dig_count == 0x01) // For Segment U8

 {

 temp1 = dig1;

 LPC_GPIO1->FIOPIN = FIRST_SEG;

 }

 else if(dig_count == 0x02) // For Segment U9

 {

 temp1 = dig2;

 LPC_GPIO1->FIOPIN = SECOND_SEG;

 }

 else if(dig_count == 0x03) // For Segment U10

 {

 temp1 = dig3;

 LPC_GPIO1->FIOPIN = THIRD_SEG;

 LAB NO 7

42

 }

 else if(dig_count == 0x04) // For Segment U11

 {

 temp1 = dig4;

 LPC_GPIO1->FIOPIN = FOURTH_SEG;

 }

 temp1 &= 0x0F;

 temp2 = array_dec[temp1]; // Decoding to 7-segment

 temp2 = temp2 << 4;

 LPC_GPIO0->FIOPIN = temp2; // Taking Data Lines for 7-Seg

 for(i=0;i<500;i++);

 LPC_GPIO0->FIOCLR = 0x00000FF0;

// LPC_GPIO1->FIOPIN = DISABLE_ALL;//disable all the segments

 }

Void delay(void)

 { unsigned int i;

 For(i=0;i<1000;i++);

 if(twenty_count ==1000) //multiplied by 500x2msec for

 //1 Sec

 {

 one_sec_flg = 0xFF;

 twenty_count = 0x00;

 }

 else twenty_count += 1;

}

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

• Cross cable for programming and serial communication : 1 No

• One working USB in the host computer system and PC for downloading

the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Hardware setup: Connect a 10 core FRC cable from CNA to CNA2 and CNB to CNB2.

 LAB NO 7

43

Working procedure: After software download and hardware setup, press the reset,

Observe the count from 0000 to 9999 on the display.

Lab Exercises:

1. Write a C program to simulate a 4 digit BCD down counter. Use timer for a delay

2. Write a C program for 4 digit BCD up/down counter on seven segment using a

switch and timer with a delay of 1-second between each count.

3. Write a program for 4 digit Hexadecimal up/down counter on seven segment using

a switch and timer with a delay of 1-second between each count.

 LAB NO 8

44

LAB NO: 8: Date:

LIQUID CRYSTAL DISPLAY (LCD) AND KEYBOARD INTERFACING

Objectives:

In this lab students will be able to

 Interface and understand the working of LCD and matrix key board

Introduction:

LCD: A 16×2 alphanumeric LCD can be used to display the message from controller.

16 pin small LCD has to be mounted to the connector CN11. 10 pin connector CNAD is

used to interface this LCD from controller. Only higher 4 data lines are used among the

8 LCD data lines. Use POT3 for contrast adjustment and Short the jumper JP16 to use

this LCD. LCD connector CN11 is described in this table. CN11 is single row 16 pin

female berg.

Connection from CNAD to LCD connector CN11 is shown below

 LAB NO 8

45

 LAB NO 8

46

Solved Exercise:

WAP to display message on LCD

#include <lpc17xx.h>

#define RS_CTRL 0x08000000 //P0.27

#define EN_CTRL 0x10000000 //P0.28

#define DT_CTRL 0x07800000 //P0.23 to P0.26 data lines

void lcd_init(void);

void wr_cn(void);

void clr_disp(void);

void delay_lcd(unsigned int);

void lcd_com(void);

void wr_dn(void);

void lcd_data(void);

void clear_ports(void);

void lcd_puts(unsigned char *);

extern unsigned long int temp1 , temp2;

 unsigned long int temp1=0, temp2=0 ;

int main(void)

{

 unsigned long adc_temp;

 unsigned int i;

 float in_vtg;

 unsigned char vtg[7],dval[7];

 unsigned char Msg3[11] = {"MIT"};

 unsigned char Msg4[12] = {"Department of ICT:"};

 SystemInit();

 SystemCoreClockUpdate();

lcd_init();

temp1 = 0x80;

 lcd_com();

 delay_lcd(800);

 lcd_puts(&Msg3[0]);

 LAB NO 8

47

 temp1 = 0xC0;

 lcd_com();

 delay_lcd(800);

 lcd_puts(&Msg4[0]);

}

//lcd initialization

 void lcd_init()

 {

 /* Ports initialized as GPIO */

 LPC_PINCON->PINSEL3 &= 0xFC003FFF; //P0.23 to P0.28

 /* Setting the directions as output */

 LPC_GPIO0->FIODIR |= DT_CTRL;

 LPC_GPIO0->FIODIR |= RS_CTRL;

 LPC_GPIO0->FIODIR |= EN_CTRL;

 clear_ports();

 delay_lcd(3200);

 temp2 = (0x30<<19);

 wr_cn();

 delay_lcd(30000);

 temp2 = (0x30<<19);

 wr_cn();

 delay_lcd(30000);

 temp2 = (0x30<<19);

 wr_cn();

 delay_lcd(30000);

 temp2 = (0x20<<19);

 wr_cn();

 delay_lcd(30000);

 temp1 = 0x28;

 lcd_com();

 delay_lcd(30000);

 LAB NO 8

48

 temp1 = 0x0c;

 lcd_com();

 delay_lcd(800);

 temp1 = 0x06;

 lcd_com();

 delay_lcd(800);

 temp1 = 0x01;

 lcd_com();

 delay_lcd(10000);

 temp1 = 0x80;

 lcd_com();

 delay_lcd(800);

 return;

 }

 void lcd_com(void)

 {

 temp2 = temp1 & 0xf0;//move data (26-8+1) times : 26 - HN

 //place, 4 - Bits

 temp2 = temp2 << 19; //data lines from 23 to 26

 wr_cn();

 temp2 = temp1 & 0x0f; //26-4+1

 temp2 = temp2 << 23;

 wr_cn();

 delay_lcd(1000);

 return;

 }

 // command nibble o/p routine

 void wr_cn(void) //write command reg

 {

 clear_ports();

 LPC_GPIO0->FIOPIN = temp2; // Assign the value to the data

 //lines

 LPC_GPIO0->FIOCLR = RS_CTRL; // clear bit RS

 LPC_GPIO0->FIOSET = EN_CTRL; // EN=1

 delay_lcd(25);

 LAB NO 8

49

 LPC_GPIO0->FIOCLR = EN_CTRL; // EN =0

 return;

 }

 // data o/p routine which also outputs high nibble first

 // and lower nibble next

 void lcd_data(void)

 {

 temp2 = temp1 & 0xf0;

 temp2 = temp2 << 19;

 wr_dn();

 temp2= temp1 & 0x0f;

 temp2= temp2 << 23;

 wr_dn();

 delay_lcd(1000);

 return;

 }

 // data nibble o/p routine

 void wr_dn(void)

 {

 clear_ports();

 LPC_GPIO0->FIOPIN = temp2; // Assign the value to the

 //data lines

 LPC_GPIO0->FIOSET = RS_CTRL; // set bit RS

 LPC_GPIO0->FIOSET = EN_CTRL; // EN=1

 delay_lcd(25);

 LPC_GPIO0->FIOCLR = EN_CTRL; // EN =0

 return;

 }

 void delay_lcd(unsigned int r1)

 {

 unsigned int r;

 for(r=0;r<r1;r++);

 return;

 }

 LAB NO 8

50

 void clr_disp(void)

 {

 temp1 = 0x01;

 lcd_com();

 delay_lcd(10000);

 return;

 }

 void clear_ports(void)

 {

 /* Clearing the lines at power on */

 LPC_GPIO0->FIOCLR = DT_CTRL; //Clearing data lines

 LPC_GPIO0->FIOCLR = RS_CTRL; //Clearing RS line

 LPC_GPIO0->FIOCLR = EN_CTRL; //Clearing Enable line

 return;

 }

 void lcd_puts(unsigned char *buf1)

 {

 unsigned int i=0;

 while(buf1[i]!='\0')

 {

 temp1 = buf1[i];

 lcd_data();

 i++;

 if(i==16)

 {

 temp1 = 0xc0;

 lcd_com();

 }

 }

 return;

 }

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

 LAB NO 8

51

• Cross cable for programming and serial communication: 1 No

• One working USB port in the host computer system and PC for downloading

the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Hardware setup:

Connect 10 pin FRC cable from CND to CNAD. Short the jumper JP16 & JP5.

Use POT3 for contrast adjustment.

Working procedure: After software download and hardware setup, press the

reset. A fixed message will display on LCD.

Exercise Questions:

1. Simulate DIE tossing on LCD

Hint: Program reads the external interrupt using the key SW2. A random number

between 0-6 should be displayed on the LCD upon keypress.

Keyboard connection: The switches SW3 to SW18 are organized as 4 rows X 4

columns matrix. One end of all the switches are configured as columns. The other end

of the matrix configured as rows. A row line will be always an output from the

controller. Column lines are pulled to ground. A high level sent from the row will

appear at column end if the switch is pressed.

Connector CNB3 is used for interfacing this block with controller. At the controller

end any connector can be used to interact this connector CNB3.

 LAB NO 8

52

Solved Exercise:

WAP to read a key from the matrix keyboard and display its key code on the LCD.

#include <LPC17xx.h>

 void scan(void);

 unsigned char col,row,var,flag,key,*ptr;

unsigned long int i,var1,temp,temp3;

int main(void)

 {

 SystemInit();

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL3 &= 0xFFC03FFF; //P1.23 to P1.26 MADE

 //GPIO

 LAB NO 8

53

 LPC_PINCON->PINSEL3 &= 0xF00FFFFF; //P2.10 t P2.13 made

 //GPIO

 LPC_GPIO2->FIODIR |= 0x00003C00; //made output P2.10 to

 //P2.13 (rows)

LPC_GPIO1->FIODIR &= 0xF87FFFFF; //made input P1.23 to

 //P1.26 (cols)

 while(1)

 {

 while(1)

 {

 for(row=1;row<5;row++)

 {

 if(row == 1)

 var1 = 0x00000400;

 else if(row == 2)

 var1 = 0x00000800;

 else if(row == 3)

 var1 = 0x00001000;

 else if(row == 4)

 var1 = 0x00002000;

 temp = var1;

 LPC_GPIO2->FIOCLR = 0x00003C00;

 LPC_GPIO2->FIOSET = var1;

 flag = 0;

 scan();

 if(flag == 1)

 break;

 } //end for(row=1;row<5;row++)

 if(flag == 1)

 break;

 } //2nd while(1)

void scan(void)

 LAB NO 8

54

 {

 unsigned long temp3;

 temp3 = LPC_GPIO0->FIOPIN;

 temp3 &= 0x0780000;

 if(temp3 != 0x00000000)

 {

 flag = 1;

 if (temp3 ==0x0080000)

 col=0;

 else if (temp3==0x0100000)

 col=1;

 else if (temp3==0x00200000)

 col=2;

 else if (temp3==0x0400000)

 col=3;

 }//1st if(temp3 != 0x00000000)

 }//end scan

Display(key) //write display function to display the keycode

 //on the LCD or on seven segment display

}

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

• Cross cable for programming and serial communication : 1 No

• One working USB port in the host computer system and PC for downloading

the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Hardware setup: Connect 10 core FRC cable from CNB to CNB3, short JP4(1, 2)

Connect another 10 core FRC cable from CND to CNAD, Short the jumper JP16

& JP5. Use POT3 for contrast.

Working procedure: After software download and hardware setup, use the reset.

Identity of key pressed (0 to F) will be displayed on LCD.

 LAB NO 8

55

Lab Exercise:

1. Write a program to input an expression of the type A operator B =, from the key

board, where A and B are the single digit BCD numbers and operator may be + or

- .Display the result on the LCD.

 LAB NO 9

56

LAB NO: 9 Date:

ANALOG TO DIGITAL CONVERTOR PROGRAM

Objectives:

In this lab students will be able to

 Understand the working of a 12 bit internal Analog-to-Digital Converter

(ADC)

Introduction: The LPC1768 contains a single 12-bit successive approximation

ADC with eight channels and DMA support. 12-bit ADC with input multiplexing

among eight pins, conversion rates up to 200 kHz, and multiple result registers.

The 12-bit ADC can be used with the GPDMA controller. On board there are two

interfaces for internal ADC’s. AD0.5 (pin P1.31) of controller is used to convert the

analog input voltage varied using POT1 to digital value. AD0.4(Pin 1.30) used convert

the analog voltage varied using POT4. A input voltage range of 0 to 3.3V is accepted.

000 to FFF is the converted digital voltage range here. Short JP18 (2, 3) to use

AD0.4.

Solved Exercise:

WAP to configure and read analog data from ADC channel no 5, and display the

digital data on the LCD

#include<LPC17xx.h>

#include<stdio.h>

#include"AN_LCD.h"

#defineRef_Vtg 3.300

#defineFull_Scale 0xFFF //12 bit ADC

int main(void)

{

 unsigned long adc_temp;

 unsigned int i;

 float in_vtg;

 unsigned char vtg[7],dval[7];

 unsigned char Msg3[11] = {"ANALOG IP:"};

 unsigned char Msg4[12] = {"ADC OUTPUT:"};

 SystemInit();

 LAB NO 9

57

 SystemCoreClockUpdate();

 LPC_SC->PCONP |= (1<<15); //Power for GPIO block

 lcd_init();

 LPC_PINCON->PINSEL3 |= 0xC0000000; //P1.31 as AD0.5

 LPC_SC->PCONP |= (1<<12); //enable the peripheral ADC

 SystemCoreClockUpdate();

 temp1 = 0x80;

 lcd_com();

 delay_lcd(800);

 lcd_puts(&Msg3[0]);

 temp1 = 0xC0;

 lcd_com();

 delay_lcd(800);

 lcd_puts(&Msg4[0]);

 while(1)

 {

 LPC_ADC->ADCR = (1<<5)|(1<<21)|(1<<24);//0x01200001;

 //ADC0.5, start conversion and operational

 //for(i=0;i<2000;i++); //delay for conversion

 while((adc_temp = LPC_ADC->ADGDR) == 0x80000000);

 //wait till 'done' bit is 1, indicates conversion complete

 adc_temp = LPC_ADC->ADGDR;

 adc_temp >>= 4;

 adc_temp &= 0x00000FFF; //12 bit ADC

 in_vtg = (((float)adc_temp * (float)Ref_Vtg))/((float)Full_Scale);

 //calculating input analog

 //voltage

 sprintf(vtg,"%3.2fV",in_vtg);

//convert the readings into string to display on LCD

 sprintf(dval,"%x",adc_temp);

 for(i=0;i<2000;i++);

 temp1 = 0x8A;

 lcd_com();

 delay_lcd(800);

 LAB NO 9

58

 lcd_puts(&vtg[0]);

 temp1 = 0xCB;

 lcd_com();

 delay_lcd(800);

 lcd_puts(&dval[0]);

 for(i=0;i<200000;i++);

 for(i=0;i<7;i++)

 vtg[i] = dval[i] = 0x00;

 adc_temp = 0;

 in_vtg = 0;

 }

}

Components required

 ALS-SDA-ARMCTXM3-01 : 1 No.

 Power supply (+5V) : 1 No.

 Cross cable for programming and serial communication : 1 No

 One working COM port (Ex: COM1) in the host computer system and PC

for downloading the software.

 10 core FRC cables of 8 inch length 2 No

 USB to B type cable 1 No

Hardware Setup: Do the setup related to LCD

Working procedure: Vary POT1 and observe the corresponding analog and digital

voltage values on LCD.

Exercise question

IV. Write a c program to display the digital value representing the difference

in analog voltages at ADC channel 4 and channel 5 on LCD. Using

BURST and Software mode

 LAB NO 10

59

 LAB NO: 10 Date:

PROGRAM ON DIGITAL TO ANALOG CONVERTOR (DAC)

Objectives:

In this lab students will be able to

 Understand the working of a 10 bit DAC and check the waveform on Cathode

Ray Oscilloscope (CRO).

Introduction: LPC1768 has 10 bit internal DAC with dedicated conversion timer and

DMA support. The DAC allows to generate a variable analog output. The maximum

output value of the DAC is VREFP. The equation to calculate output voltage value is

given as below.

AOUT = DACR value x ((VREFP - VREFN)/1024) + VREFN

 An analog output from the controller can be observed in this block at TP8. Open JP5

to use this feature and use CRO to watch analog output value.

Solved Exercise:

WAP to generate a sawtooth waveform using DAC and display it on CRO.

#include <lpc17xx.h>

 #define DAC_BIAS (0x1<<16) //maximum update rate of 400KHz

 #define DATA_LENGTH 0x400 //Maximum value is 0xCFF in 10 bit DAC

 void DAC_Init(void);

 int main (void)

 {

 unsigned int m,i=0;

 SystemInit();

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL1 = 0x00200000; /* set p0.26 to DAC output */

 /* Initialize DAC */

 DAC_Init();

 LAB NO 10

60

 while (1)

 {

 LPC_DAC->DACR = (i << 6) ;

//| DAC_BIAS; // AOUT = DACR value x ((VREFP - VREFN)/1024) + VREFN

 i=i+50;

 for(m = 100; m > 1; m--);

 if (i == DATA_LENGTH) //Maximum value is 0xCFF in 10 bit DAC

 {

 i = 0;

 }

 }

 }

 void DAC_Init(void)

 {

 /* Note that the DAC does not have a control bit in the PCONP register.

 To enable the DAC, its output must be selected to appear on the

 related pin, P0.26, by configuring the PINSEL1 register */

 /* setup the related pin to DAC output */

 LPC_DAC->DACCNTVAL = 0x00FF;

 LPC_DAC->DACCTRL = (0x1<<1)|(0x1<<2);

 return;

 }

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

• Cross cable for programming and serial communication : 1 No

 LAB NO 10

61

• One working USB port in the host computer system and PC for downloading

the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Hardware setup:

Open the jumper JP5

Connect TP8 pin to CRO positive wire and TP3 to CRO negative wire. Scale the CRO

to the proper display

Working procedure: Reset the controller and observe the analog output waveform on

CRO.

Lab Exercises:

1. Using DAC generate a triangular waveform with maximum possible peak-peak

amplitude.

2. Using DAC, generate a variable frequency sine waveform. Use ROW-0 of

keyboard for frequency variation

 LAB NO 11

62

LAB NO: 11 Date:

PROGRAM ON PULSE WIDTH MODULATION (PWM)

Objectives:

In this lab students will be able to

 Interface and understand the working of PWM

Introduction: The PWM is based on the standard Timer block and inherits all of

its features, although only the PWM function is pinned out on theLPC1768. The Timer

is designed to count cycles of the system derived clock and optionally switch pins,

generate interrupts or perform other actions when the specified timer values occur, based

on seven match registers. The PWM function is in addition to these features, and is based

on match register events. A PWM output from the controller can be observed as an

intensity variation of the LED LD10.

Solved Exercise:

WAP to vary the intensity of an LED using PWM.

#include <LPC17xx.H>

 void pwm_init(void);

 void PWM1_IRQHandler(void);

 unsigned long int i;

 unsigned char flag,flag1;

 int main(void)

 {

 SystemInit();

 SystemCoreClockUpdate();

 pwm_init();

 while(1)

 {

 for(i=0;i<=1000;i++); // delay

 }//end of while

 LAB NO 11

63

 }//end of main

 void pwm_init(void)

 {

 LPC_SC->PCONP |= (1<<6); //PWM1 is powered

 LPC_PINCON->PINSEL3 &= ~(0x0000C000); //cleared if any other

 //functions are enabled

 LPC_PINCON->PINSEL3 |= 0x00008000; //pwm1.4 is selected for the pin

 //P1.23

 LPC_PWM1->PR = 0x00000000; //Count frequency : Fpclk

 LPC_PWM1->PCR = 0x00001000; //select PWM1 single edge

 LPC_PWM1->MCR = 0x00000003; //Reset and interrupt on PWMMR0

 LPC_PWM1->MR0 = 30000; //setup match register 0 count

 LPC_PWM1->MR4 = 0x00000100; //setup match register MR1

 LPC_PWM1->LER = 0x000000FF; //enable shadow copy register

 LPC_PWM1->TCR = 0x00000002; //RESET COUNTER AND PRESCALER

 LPC_PWM1->TCR = 0x00000009; //enable PWM and counter

 NVIC_EnableIRQ(PWM1_IRQn);

 return;

 }

 void PWM1_IRQHandler(void)

 {

 LPC_PWM1->IR = 0xff; //clear the interrupts

 if(flag == 0x00)

 {

 LPC_PWM1->MR4 += 100;

 LPC_PWM1->LER = 0x000000FF;

 LAB NO 11

64

 if(LPC_PWM1->MR4 >= 27000)

 {

 flag1 = 0xff;

 flag = 0xff;

 LPC_PWM1->LER = 0x000000fF;

 }

 }

 else if(flag1 == 0xff)

 {

 LPC_PWM1->MR4 -= 100;

 LPC_PWM1->LER = 0x000000fF;

 if(LPC_PWM1->MR4 <= 0x500)

 {

 flag = 0x00;

 flag1 = 0x00;

 LPC_PWM1->LER = 0X000000fF;

 }

 }

 }

Hardware setup: Connect 10 pin FRC cable from CNB to CNB1.

Working procedure: As the pulse width varies, intensity of LED LD10 varies.

Observe the pulses at TP5. Observe the amplitude level at TP6.

Lab Exercises:

Write a program to set the following intensity levels to the LED connected to PWM

output. Use ROW-0 of keyboard for intensity variation

 Intensity level Key pressed

 10% 0

 25% 1

 LAB NO 11

65

 50% 2

 75% 3

 Appendix A

66

LAB NO: 12 Date:

PROGRAM ON STEPPER MOTOR

Objectives

In this lab students will be able to

 Interface and understand the working of stepper motor

Introduction: The Stepper motor can be interfaced to the board by connecting it to

the Power Mate PM1. The direction of the rotation can be changed through software.

The DC Motor can also be interfaced to the board by connecting it to the Reliamate

RM5. The direction of the rotation can be changed through software.

The Relay K2 is switched between ON and OFF state. The LED L12 will toggle for

every relay switch over. The contact of NO & NC of the relay can be checked at the

MKDSN connector CN12 pins 1 & 2 using a CRO– these contacts can be connected

to external devices. Using connector CNA5 micro controller can interface with this

block.

Description of the connector pins are given in below table.

PM1– it's a 5 pin straight male power mate. PIN descriptions are as given below.

 Appendix A

67

Pin 2 to 5 are phase A to D output for the stepper motor respectively.

Sample program: To rotate the stepper motor in clockwise and anticlockwise

direction at a particular speed continuously.

#include <LPC17xx.H>

 void clock_wise(void);

 void anti_clock_wise(void);

 unsigned long int var1,var2;

 unsigned int i=0,j=0,k=0;

 int main(void)

 {

 SystemInit();

 SystemCoreClockUpdate();

 LPC_PINCON->PINSEL0 = 0xFFFF00FF; //P0.4 to P0.7 GPIo

 LPC_GPIO0->FIODIR = 0x000000F0; //P0.4 to P0.7 output

 while(1)

 {

 for(j=0;j<50;j++) // 20 times in Clock wise Rotation

 clock_wise();

 for(k=0;k<65000;k++); // Delay to show anti_clock Rotation

 Appendix A

68

 for(j=0;j<50;j++) // 20 times in Anti Clock wise Rotation

 anti_clock_wise();

 for(k=0;k<65000;k++); // Delay to show clock Rotation

 } // End of while(1)

 } // End of main

 void clock_wise(void)

 {

 var1 = 0x00000008; //For Clockwise

 for(i=0;i<=3;i++) // for A B C D Stepping

 {

 var1 = var1<<1; //For Clockwise

 var2 = ~var1;

 var2 = var2 & 0x000000F0;

 LPC_GPIO0->FIOPIN = ~var1;

 //LPC_GPIO0->FIOSET = var1;

 //LPC_GPIO0->FIOCLR = var2;

 for(k=0;k<3000;k++); //for step speed variation

 }

 }

 void anti_clock_wise(void)

 {

 var1 = 0x00000100; //For Anticlockwise

 for(i=0;i<=3;i++) // for A B C D Stepping

 Appendix A

69

 {

 var1 = var1>>1; //For Anticlockwise

 var2 = ~var1;

 var2 = var2 & 0x000000F0;

 LPC_GPIO0->FIOPIN = ~var1;

 //LPC_GPIO0->FIOSET = var1;

 //LPC_GPIO0->FIOSET = var2;

 for(k=0;k<3000;k++); //for step speed variation

 }

 }

Components required

• ALS-SDA-ARMCTXM3-01 : 1 No.

• Power supply (+5V) : 1 No.

• Cross cable for programming and serial communication: 1 No

• Stepper motor 1 No

• One working USB port in the host computer system and PC for downloading

the software.

• 10 core FRC cables of 8 inch length 2 No

• USB to B type cable 1 No

Hardware setup: Connect 10 pin FRC cable from CNA to CNA5. Connect the

stepper motor to PM1.

Working procedure: Stepper motor will rotate clockwise and in anti-clock wise

direction automatically after reset.

Lab Exercise:

Write a C program to rotate the stepper motor in the clockwise direction when SW2 is

high and anticlockwise direction when SW2 is low.

 Appendix A

70

Appendix A: Instructions

Instruction Set Summary

Mnemonic Operation Description

ADC
Rd := Rn + Op2 + C Add with carry

ADD
Rd := Rn + Op2 Add

ADDS Rd: = Rn+ Op2 Add and update falgs

ADR Rd: = Rn, label Load register with adress

AND
Rd := Rn AND Op2 AND

ANDS Rd := Rn AND Op2 AND update flags

ASR Rd: = Rn,#LSB,#width Arithmetic shift right

B
R15 := address Branch

BIC
Rd := Rn AND NOT Op2 Bit Clear

BL
R14 := address of next

instruction, R15 :=address

Branch with Link

BX
R15 := Rn, change to

Thumb if address bit 0 is 1

Branch and Exchange

CLZ Rd := number of leading

zeroes in Rm

Count Leading Zeroes

CMN
CPSR flags := Rn + Op2 Compare Negative

CMP
CPSR flags := Rn - Op2 Compare

EOR
Rd:= Rn EOR Op2 Exclusive OR

LDM
Stack manipulation (Pop) Load multiple Registers (refer last

paragraph of this appendix)

LDMIA LDMIA Rn!, {reglist} Load multiple registers from memory

LDR
Rd := [address][31:0] Load 32-bit word from memory.

LDRB
Rd := ZeroExtend

([address][7:0])

Load register byte value to Memory.

ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_adc.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_add.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_and.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_b.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_bic.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_bl.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_bx.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_cmn.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_cmp.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_eor.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_ldm.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_ldr.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_ldrb.htm

 Appendix A

71

LDRH
Rd := ZeroExtend

([address][15:0])

Load register 16-bit halfword value to

Memory.

MCR
cRn:=rRn {<op>cRm} Move CPU register to coprocessor

register

MLA
Rd := (Rm * Rs) + Rn Multiply Accumulate

MOV
Rd := Op2 Move register or constant

MRS
Rn := PSR Move PSR status flags to register

MSR
PSR := Rm Move register to PSR status flags

MUL
Rd := Rm * Rs Multiply

MVN
Rd := NOT Rm Move inverted register or constant

NOP None No operation

ORR
Rd:=Rn OR Op2 OR

PUSH PUSH {reg list} Push registers on to the stack pointed by

R13

POP POP{reg. list} Pop registers from the stack pointed by

R13

RSB
Rd := Op2 – Rn Reverse Subtract

RSC
Rd := Op2 - Rn - 1+Carry Reverse Subtract with Carry

RBIT RBIT Rd, Rn Reverse the bit order in a 32-bit word

REV REV Rd, Rn converts 32-bit big-endian data into

little-endian data or 32-bit little-endian

data into big-endian data

ROR Rd: = Rd, Rs Rotate Rd register by Rs bits

RRX Rd: = Rd, Rm Rotate Right with Extend

SBC
Rd := Rn - Op2 - 1+Carry Subtract with Carry

STM
stack manipulation (Push) Store Multiple (refer last paragraph of

this appendix

STR
<address>:=Rd Store register to memory

STRB
[address][7:0] := Rd[7:0] Store register byte value to Memory.

STRH
[address][15:0] :=Rd[15:0] Store register 16-bit halfword value to

Memory

ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_ldrh.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mcr.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mla.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mov.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mrs.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_msr.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mul.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_mvn.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_orr.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_rsb.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_rsc.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_sbc.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_stm.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_str.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_strb.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_strh.htm

 Appendix A

72

SUB
Rd := Rn - Op2 Subtract

TEQ
CPSR flags:= Rn EOR

Op2

Test bitwise equality

TST
CPSR flags:= Rn AND

Op2

Test bits

UMULL UMULL r0, r4, r5, r6 Unsigned Long Multiply

A conditional instruction is only executed on match of the condition flags in the

Program Status Register. For example, the BEQ (B instruction with EQ condition)

branches only if the Z flag is set. If the {cond} field is empty the instruction is always

executed.

{cond} Suffix Tested Status Flags Description

EQ Z set equal

NE Z clear not equal

CS/HS C set unsigned higher or same

CC/LO C clear unsigned lower

MI N set negative

PL N clear positive or zero

VS V set overflow

VC V clear no overflow

HI C set and Z clear unsigned higher

LS C clear or Z set unsigned lower or same

GE N equals V signed greater or equal

LT N not equal to V signed less than

GT Z clear AND (N equals V) signed greater than

LE Z set OR (N not equal to V) signed less than or equal

AL (ignored) always (usually omitted)

ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_sub.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_teq.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_tst.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_op2.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_1_PSR.htm
ms-its:C:/Keil/ARM/Hlp/isa.chm::/isa_2_b.htm

 Appendix A

73

Addressing Mode for LDM and STM

The instructions LDM and STM provide four different addressing modes. The addressing

mode specifies the behavior of the base register and is explained in the following table.

Addressing Mode Description

IA Increment base register after instruction execution.

IB Increment base register before instruction execution.

DA Decrement base register after instruction execution.

DB Decrement base register before instruction execution.

Examples: STMDB R2!,{R4,R5,LR}

 LDMIA R0!,{R1-R5}

 STMDB R6!,{R0,R1,R5}

mk:@MSITStore:C:/Keil/ARM/Hlp/isa.chm::/isa_2_stm.htm

 Appendix B

74

Appendix B: Addressing modes

Name Alternative Name ARM Examples

--

Register to register Register direct MOV R0, R1

--

Absolute Direct LDR R0, MEM

--

Literal Immediate MOV R0, #15

 ADD R1, R2, #12

--

Indexed, base Register indirect LDR R0, [R1]

--

Pre-indexed, Register indirect LDR R0, [R1, #4]

base with displacement with offset

--

Pre-indexed, Register indirect LDR R0, [R1, #4]!

autoindexing pre-incrementing

--

Post-indexing, Register indirect LDR R0, [R1], #4

autoindexed post-increment

--

Double Reg indirect Register indirect LDR R0, [R1, R2]

 Register indexed

--

Double Reg indirect Register indirect LDR R0, [R1, r2, LSL #2]

with scaling indexed with scaling

--

Program counter relative LDR R0, [PC, #offset]

Literal Addressing

 In this addressing mode data is a part of instruction. ‘#’ symbol is used to indiacate the

data. ARM and Thumb instructions can only be 32 bits wide. You can use a MOV or

MVN instruction to load a register with an immediate value from a range that depends on

the instruction set. Certain 32-bit values cannot be represented as an immediate operand

to a single 32-bit instruction, although you can load these values from memory in a single

 Appendix B

75

instruction. you can load any 32-bit immediate value into a register with two instructions,

a MOV followed by a MOVT. Or, you can use a pseudo-instruction, MOV32, to construct

the instruction sequence for you. You can also use the LDR pseudo-instruction to load

immediate values into a register

 Examples Meaning

--

 CMP R0, #22 ;Compare Register content R0 with 22

--

 ADD R1, R2, #18 ;Add the content of R2 and 18 then store

 ;the result in R1

--

 MOV R1, #30 ;copy the data 30 into register R1

--

 MOV R1, #0Xff ;copy the data ff in hexadecimal into R1

--

 MOV R2, #0xFF0000FF

--

 AND R0, R1, #0xFF000000

--

 CMN R0, #6400 ; update the N, Z, C and V flags

--

 CMPGT SP, R7, LSL #2 ; update the N, Z, C and V flags

--

 MOV can load any 8-bit immediate value, giving a range of 0x0-0xFF (0-255). It can

also rotate these values by any even number. These values are also available as

immediate operands in many data processing operations, without being loaded in a

separate instruction.

 MVN can load the bitwise complements of these values. The numerical values are -

(n+1), where n is the value available in MOV.

 A MOVT instruction that can load any value in the range 0x0000 to 0xFFFF into the

most significant half of a register, without altering the contents of the least significant

half.

 The LDR Rd,=const pseudo-instruction generates the most efficient single instruction

to load any 32-bit number

 Appendix B

76

Introduction to Register Indirect Addressing : Register indirect addressing means that

the location of an operand is held in a register. It is also called indexed addressing or base

addressing.

Register indirect addressing mode requires three read operations to access an operand. It

is very important because the content of the register containing the pointer to the operand

can be modified at runtime. Therefore, the address is a vaiable that allows the access to

the data structure like arrays.

 Read the instruction to find the pointer register

 Read the pointer register to find the oprand address

 Read memory at the operand address to find the operand

Some examples of using register indirect addressing mode:

 LDR R2, [R0] ; Load R2 with the word pointed by R0

--

 STR R2, [R3] ; Store the word in R2 in the location

 ; pointed by R3

--

LDR Rd,=label can load any 32-bit numeric value into a register. It also accepts PC-

relative expressions such as labels, and labels with offsets

 Register Indirect Addressing with an Offset

ARM supports a memory-addressing mode where the effective address of an operand is

computed by adding the content of a register and a literal offset coded into load/store

instruction. For example,

 Instruction Effective Address

 LDR R0, [R1, #20] R1 + 20 ; loads R0 with the word

 ; pointed at by R1+20

 Appendix B

77

ARM's Autoindexing Pre-indexed Addressing Mode

This is used to facilitate the reading of sequential data in structures such as arrays, tables,

and vectors. A pointer register is used to hold the base address. An offset can be added to

achieve the effective address. For example,

 Instruction Effective Address

--

 LDR R0, [R1, #4]! R1 + 4 ; loads R0 with the word

 ;pointed at by R1+4 then

 ;update the pointer

 ;by adding 4 to R1

--

ARM's Autoindexing Post-indexing Addressing Mode

This is similar to the above, but it first accesses the operand at the location pointed by the

base register, then increments the base register. For example,

 Instruction Effective Address

--

 LDR R0, [R1], #4 R1 ;loads R0 with the word

 ;pointed at by R1 then

 ;update the pointed by

 ;adding 4 to R1

--

Program Counter Relative (PC Relative) Addressing Mode

Register R15 is the program counter. If you use R15 as a pointer register to access

operand, the resulting addressing mode is called PC relative addressing. The operand is

specified with respect to the current code location. Please look at this example,

 Instruction Effective Address

--

 LDR R0, [R15, #24] R15 + 24 ;loads R0 with the word

 ;pointed at by R1+24

--

 Appendix C

78

APPENDIX C

GPIO extension connectors:

There are four 10 pin FRC type male connectors, they extends the controllers

general purpose port lines for the use of user requirements. Details on each connector is

given below:

CNA –10 pin male box type FRC connector. Port lines P0.4 to P0.11 from controller are

terminated in this connector. They can be extended to interface few on board or external

peripherals. The pins mentioned in the above table are configured to work as a GPIO's at

power on. Other alternate functions on those pins needs to be selected using

respective PINSEL registers.

CNB – 10 pin male box type FRC connector. Port lines fromP1.23 to P1.26 and P2.10

to P2.13 are terminated in this connector.

Description of the connector CNB:

 Appendix C

79

CNC – 10 pin male box type FRC connector. Port lines fromP0.15 to P0.22 and P2.13

are terminated in this connector.

 Appendix C

80

CND – 10 pin male box type FRC connector. Port lines fromP0.23 to P0.28 and P2.0 to

P2.1 are terminated in this connector.

